Multiple Ant Colonies Algorithm Based on Colony Level Interactions

نویسندگان

  • Hidenori KAWAMURA
  • Masahito YAMAMOTO
  • Keiji SUZUKI
چکیده

Recently, researchers in various fields have shown interest in the behavior of creatures from the viewpoint of adaptiveness and flexibility. Ants, known as social insects, exhibit collective behavior in performing tasks that can not be carried out by an individual ant. In ant colonies, chemical substances, called pheromones, are used as a way to communicate important information on global behavior. For example, ants looking for food lay the way back to their nest with a specific type of pheromone. Other ants can follow the pheromone trail and find their way to baits efficiently. In 1991, Colorni et al. proposed the ant algorithm for Traveling Salesman Problems (TSPs) by using the analogy of such foraging behavior and pheromone communication. In the ant algorithm, there is a colony consisting of many simple ant agents that continuously visit TSP cities with opinions to prefer subtours connecting near cities and they lay strong pheromones. The ants completing their tours lay pheromones of various intensities with passed subtours according to distances. Namely, subtours in TSP tourns that have the possibility of being better tend to have strong pheromones, so the ant agents specify good regions in the search space by using this positive feedback mechanism. In this paper, we propose a multiple ant colonies algorithm that has been extended from the ant algorithm. This algorithm has several ant colonies for solving a TSP, while the original has only a single ant colony. Moreover, two kinds of pheromone effects, positive and negative pheromone effects, are introduced as the colony-level interactions. As a result of colony-level interactions, the colonies can exchange good schemata for solving a problem and can maintain their own variation in the search process. The proposed algorithm shows better performance than the original algorithm with almost the same agent strategy used in both algorithms except for the introduction of colony-level interactions. key words: multi-agent system, ant algorithm, traveling salesman problems, combinatorial optimization problems

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exchange strategies for multiple Ant Colony System

In this paper we apply the concept of parallel processing to enhance the performance of the Ant Colony System algorithm. New exchange strategies based on a weighting scheme are introduced under three different types of interactions. A search assessment technique based on a team consensus methodology is developed to study the influence of these strategies on the search behavior. This technique d...

متن کامل

Improvement of Routing Operation Based on Learning with Using Smart Local and Global Agents and with the Help of the Ant Colony Algorithm

Routing in computer networks has played a special role in recent years. The cause of this is the role of routing in a performance of the networks. The quality of service and security is one of the most important challenges in routing due to lack of reliable methods. Routers use routing algorithms to find the best route to a particular destination. When talking about the best path, we consider p...

متن کامل

Improvement of Routing Operation Based on Learning with Using Smart Local and Global Agents and with the Help of the Ant Colony Algorithm

Routing in computer networks has played a special role in recent years. The cause of this is the role of routing in a performance of the networks. The quality of service and security is one of the most important challenges in routing due to lack of reliable methods. Routers use routing algorithms to find the best route to a particular destination. When talking about the best path, we consider p...

متن کامل

Interaction Networks and the Regulation of Ant Colony Behavior

An ant colony operates without central control. Each ant uses only local information, mostly odor, and no ant can make global assessments about what needs to be done. No ant gives instructions to another. Through the local decisions of individuals, colonies adjust their behavior to current conditions. An ant decides where to go and what to do based on its recent experience of brief interactions...

متن کامل

A Multilevel k–way Partitioning Algorithm for Finite Element Meshes using Competing Ant Colonies

The self–organizing properties of ant colonies are employed to tackle the classical combinatorial optimization problem of graph partitioning. Structural information from the graph is mapped onto an environment upon which a number of colonies compete for resources. Using Genetic Programming, a Foraging Strategy is evolved which when executed by the ants in each colony leads to a restructuring of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000